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ABSTRACT
Motivation: A model for learning potential causes of
toxicity from positive and negative examples and pre-
dicting toxicity for the dataset used in the Predictive
Toxicology Challenge (PTC) is presented. The learning
model assumes that the causes of toxicity can be given
as substructures common to positive examples that are
not substructures of negative examples. This assumption
results in the choice of a learning model, called the
JSM-method, and a language for representing chemical
compounds, called the Fragmentary Code of Substructure
Superposition (FCSS). By means of the latter, chemical
compounds are represented as sets of substructures
which are ‘biologically meaningful’ from the expert point of
view.
Results: The chosen learning model and representation
language show comparatively good performance for the
PTC dataset: for three sex/species groups the predictions
were ROC optimal, for one group the prediction was nearly
optimal. The predictions tend to be conservative (few
predictions and almost no errors), which can be explained
by the specific features of the learning model.
Availability: by request to finn@viniti.ru; serge@viniti.ru,
http://ki-www2.intellektik.informatik.tu-darmstadt.de/∼jsm/
QDA
Contact: serge@viniti.ru

INTRODUCTION
Our approach for the analysis of the dataset used in the
Predictive Toxicology Challenge is two-fold. The first
component of the approach is a learning model called the
JSM-method (in honor of John Stuart Mill, the English
philosopher who proposed schemes of inductive reasoning
in the 19th century). The JSM-method is based on Mill’s
idea that common effects are likely to be due to common
causes. Originally the JSM-method was formulated in the
early 1980s in terms of a predicate logic, which is an ex-
tension of the First-Order Predicate Logic with quantifiers

∗To whom correspondence should be addressed.

over tuples of variable length (Finn, 1991). The fragment
of the JSM-method that was used for the PTC (based on
so-called counterexample-forbidding hypotheses (Finn,
1991), which will be called simply hypotheses in this
paper) complies with the common paradigm of learning
from positive and negative examples (Mitchell, 1997):
given descriptions of positive and negative examples
w.r.t. a goal attribute, positive hypotheses are ‘generalized
descriptions’ of a subset of positive examples that do not
‘cover’ any negative example. Negative hypotheses are
defined similarly.

The second component of the approach is the language
for representing chemical structures. Toxicity of a chemi-
cal compound, as any other biological activity, depends on
the character of weak bonds that arise between the com-
pound and the biological receptor during their interaction.
It is well-known that these bonds depend on π -electrons
of the compound. This is why we used the so-called
fragmentary code of substructure superposition (FCSS)
as our descriptor language. FCSS was first proposed in
(Avidon and Pomerantsev, 1982) and later developed
within a coding software system (Leibov, 1991; Blinova
and Dobrynin, 2000). By means of this language, a chem-
ical compound is described by a set of substructures that
are centers of localization of π -electrons. The description
of a chemical compound by means of the FCSS language
is often more relevant for the study of biological activities
than the descriptions by structural formulae and/or by
their simplifications.

LEARNING METHOD
Here, for the sake of simplicity, we present a fragment of
the JSM-method (exactly the one used for the Predictive
Toxicology Challenge) in terms of Formal Concept Analy-
sis (FCA) (Ganter and Wille, 1999) in the way it was done
in (Ganter and Kuznetsov, 2000). First, we recall some ba-
sic notions of FCA (Ganter and Wille, 1999).

A (formal) context is a triple of sets K = (G, M, I ),
where G is called a set of objects, M is called a set of
attributes, and I ⊆ G × M is a relation. For g ∈ G and
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m ∈ M gIm is interpreted as ‘object g has attribute m’. For
A ⊆ G and B ⊆ M derivation operators (·)′ are defined
as follows:

A′ = {m ∈ M |∀g ∈ A(gIm)};
B ′ = {g ∈ G|∀m ∈ B(gIm)}.

A (formal) concept of a context (G, M, I ) is a pair (A, B),
where A ⊆ G, B ⊆ M , A′ = B, and B ′ = A. The set A is
called the (formal) extent and B the (formal) intent of the
concept (A, B).

Let w be a goal attribute, different from attributes from
the set M (the latter can be called structural attributes).
For example, in the toxicology analysis w corresponds to
toxicity and the structural attributes from M correspond to
particular molecular substructures.

Input data for learning are given by sets of positive,
negative and undetermined examples w.r.t. the goal
attribute w. The undetermined examples are to be clas-
sified by means of the learned hypotheses. In terms of
FCA, this situation can be described by three contexts:
a positive context K+ = (G+, M, I+), a negative con-
text K− = (G−, M, I−), and an undetermined context
Kτ = (Gτ , M, Iτ ). Here G+, G−, and Gτ are sets of
positive, negative and undetermined examples, respec-
tively; M is the set of structural attributes; Iε ⊆ Gε × M ,
ε ∈ {+, −, τ } are relations that specify the structural
attributes of positive, negative, and undetermined ex-
amples, respectively. The derivation operators in these
three contexts are denoted by superscripts +, −, and
τ , respectively. For example, the intents of a positive
example g+, negative example g−, and undetermined
example gτ are denoted by g++ , g−− and gτ

τ , respectively.
Intents of contexts K+, K− and Kτ are called positive,
negative and undetermined intents, respectively.

EXAMPLE 1. Consider positive, negative, and un-
determined contexts given by the set of attributes
M = {a, b, c, d, e}, the set of positive examples
G+ = {g1, g2, g3, g4}, the set of negative examples
G− = {g5, g6, g7}, and the set of undetermined examples
Gτ = {g8, g9, g10}. The relations I+, I−, Iτ are given by
the intents of examples as follows:

g+
1 = {a, b, c}, g−

5 = {a, c, d}, gτ
8 = {a, b, c, e},

g+
2 = {a, b, d}, g−

6 = {b, c, d}, gτ
9 = {c, d, e},

g+
3 = {a, b, e}, g−

7 = {a, d, e}, gτ
10 = {a, b, c, d}.

g+
4 = {a, c, e},

By the definitions, besides intents of examples, we have
the following positive intents:

{g1, g2, g3}+ = {g1, g2}+ = {g1, g3}+
= {g2, g3}+ = {a, b},

{g3, g4}+ = {a, e}, {g1, g4}+ = {a, c}, {g1, g2, g3, g4}+
= {g2, g4}+ = {a},

and the following negative intents:

{g5, g6}− = {c, d}, {g5, g7}− = {a, d}, {g5, g6, g7}−
= {g6, g7}− = {d}.

Now, a positive hypothesis (called a counterexample
forbidding hypothesis by Finn (1991)) is defined in the
following way. If intent h+ of a concept of the positive
context K+ is not contained in the intent of any negative
example (i.e. ∀g− ∈ G−h+ �⊂ g−−) and |h++| � 2 (there
are at least two positive examples with intents containing
h+), then it is called a positive hypothesis w.r.t. the goal
attribute w. Negative hypotheses are defined similarly:
If intent h− of a concept of the negative context K− is
not contained in the intent of any positive example (i.e.
∀g+ ∈ G+h− �⊂ g++) and |h−−| � 2 (there are at least two
negative examples with intents containing h−), then it is
called a negative hypothesis w.r.t. the goal attribute w.

In case of data given in Example 1, the intent {a, b}
is a positive hypothesis, whereas {a}, {a, c}, and {a, e}
are not, since, e.g. {a} ⊆ {a, c} ⊆ g−

5 = {a, c, d} and
{a, e} ⊆ g−

7 = {a, d, e}. The negative intent {c, d} is a
negative hypothesis, whereas {d} and {a, d} are not, since
{d} ⊆ {a, d} ⊆ g+

2 = {a, b, d}.
Hypotheses are used for the classification of undeter-

mined examples from Gτ . If intent gτ
τ of an undetermined

example gτ ∈ Gτ contains a positive hypothesis h+ (i.e.
gτ
τ ⊇ h+), we say that h+ is for the positive classification

of gτ . A hypothesis for the negative classification of gτ is
defined similarly: If intent gτ

τ contains a negative hypoth-
esis h− (i.e. gτ

τ ⊇ h−), we say that h− is for the negative
classification of gτ .

If there is a hypothesis for the positive classification of
gτ and no hypothesis for the negative classification of gτ ,
then gτ is classified positively. Negative classifications of
gτ are defined similarly, i.e. if there is a hypothesis for
its negative classification and there is no hypothesis for its
positive classification. If gτ

τ does not contain any negative
or positive hypothesis, then no classification is made (gτ

remains undetermined). If gτ
τ contains both positive and

negative hypotheses, then the classification is said to be
contradictory.

In the case of data from Example 1, the classification
of g8 is positive, since {a, b} is a positive hypothesis,
{a, b} ⊆ gτ

8 = {a, b, c, e}, and no negative hypothesis
is a subset of gτ

8 . The classification of g9 is negative,
since {c, d} is a negative hypothesis, {c, d} ⊆ gτ

9 =
{c, d, e}, and no positive hypothesis is a subset of gτ

9 .
The classification of g10 is contradictory, since {a, b} ⊆
gτ

10 = {a, b, c, d} and {c, d} ⊆ gτ
10.

In the application of the JSM-method, a kind of cross-
validation technique called criterion of sufficient grounds
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Chemical structure                              Complete list of descriptors

The cyclic descriptor 6,06 represents the cyclic part of the molecule:

6,06  stays for the                        

ring size (6)

and the number of

π-electrons (06) in the ring

Linear descriptors correspond to two descriptor centers and a path between them:

0200331    (x2)                                           1300241  (x2)                    2400331   (x2)

The FCSS code of the structure has two substitution descriptors: 0264241 and 0262241.

0264241 is for the substructure
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N
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DC no.24 62: ”orto”position

1: conjugation

Fig. 1. An example of FCSS encoding of a chemical structure.

(CSG) is used. Suppose that we generated hypotheses
according to the definitions above. Then, instead of
applying them to undetermined examples, we try to
reclassify original positive and negative examples. CSG
is then the ratio of correctly classified original examples.

Note that the definitions above can be applied to more
general data structures, e.g. for multisets (where the

number of occurrences in a set are given for each element
of the set) and sets of graphs (Kuznetsov, 1991). In
Figure 1 the case of multisets is considered. Predictions
for the PTC dataset were also carried out for the multiset
representation.

As for computing hypotheses, the following can be said.
By definition, a hypothesis is a special kind of formal
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intent. Hence, positive hypotheses are naturally generated
as intents satisfying the condition of not being contained
in the intents of negative examples (similarly for negative
hypotheses). In the worst case, testing this condition for
one intent takes O(|M | · |G−|) time. Several algorithms
for computing formal intents are known, a review of them
can be found in (Kuznetsov and Obiedkov, 2001). The
algorithms mostly used in practice can compute the set of
all positive intents Int+ in time O(|M |2|G+| · |Int+|). In
the worst case the number of all intents (and hypotheses)
can be exponential in the size of the underlying context,
however for many real-life datasets the number is not
very large. To reduce storage space, one can retain only
hypotheses minimal w.r.t. inclusion (thus, any proper
subset of a minimal hypothesis is not a hypothesis), since
the set of all minimal hypotheses brings about the set of
classifications equal to that brought about by the set of all
hypotheses.

DESCRIPTOR LANGUAGE FOR
REPRESENTING CHEMICAL COMPOUNDS
Toxicity of a chemical compound, as any other biological
activity, depends on the character of weak bonds that
arise between the compound and the biological receptor
during their interaction. It is well-known that these bonds
depend on π -electrons of the compound. That is why we
used a descriptor language called the fragmentary code
of substructure superposition (FCSS). The first version of
this language was proposed in (Avidon and Pomerantsev,
1982), later on it was elaborated as a machine coding
system (Leibov, 1991; Blinova and Dobrynin, 2000). By
means of this language a chemical compound is described
as a set of substructures that are centers of localization
of π -electrons. The description of a chemical compound
by means of FCSS language is often more relevant for
the study of biological activities than the descriptions by
structural formulae or their simplifications.

Now we give a short description of the FCSS language.
First, active or descriptor centers (DC) are distinguished
in a chemical compound. DCs are atoms or groups of
atoms that can be centers of ‘weak’ interaction. They
are atoms and groups of atoms that contain movable π -
and d-electrons or a whole electrostatic charge, i.e. all
heteroatoms (N, O, S, P, halloids, metals, etc.), carbon
pairs connected with multiple (double, triple) bonds and
aromatic cyclic systems as a whole. The list of descriptor
centers of FCSS is given in Tables 1 and 2.

Some descriptor centers, e.g. 33, 34, 35, 36, 37, 40 and
41 are not mentioned in Tables 1 and 2 and are defined
as follows. DC #33 corresponds to an arbitrary atom in
an aromatic cycle that does not contain any heteroatoms;
DC #34 corresponds to an arbitrary heteroatom in an
aromatic cycle; DC #35 (#36, #37) correspond to a carbon

Table 1. List of FCSS Descriptor Centers of the first type

Atom Valences DC Number Atom Valences DC Number

Li 1 43 Ga 3 43
Be 1 43 Ge 4 43
B 3 53 As 3,5 51
N− 2 00 As+ 4 51
O− 1 15 Se 2,4,6 54
O+ 3 16 Br 1 31
F 1 32 Br 1 48
Na 1 43 Rb 1 43
Mg 2 43 Sr 2 43
Al 3 43 Y 3 43
Si 2,4 52 Zr 4 43
P 3,4,5 47 Nb 2,5 43
P+ 4 47 Mo 2,4,6 43
S 6 23 Ag 1,2 43
S+ 3,4 23 Cd 2 43
Cl 1 31 Sn 2,4 43
K 1 43 Sb 3,5 51
Ca 2 43 Te 2,4,6 54
Sc 3 43 I 1 31
Ti 4 43 I 1 49
V 2,3,4,5 43 Ba 2 43
Cr 2,3,4,6 43 Pt 2 43
Mn 2,4,7 43 Au 1,2 43
Fe 2,3 43 Hg 1,2 43
Co 2 43 Ti 3 43
Ni 2 43 Pb 2,4 43
Cu 1,2 43 Bi 2,3,5 43
Zn 2 43

Table 2. List of FCSS Descriptor Centers of the second type (Z denotes any
atom, R denotes any atom except for H)

DC Valence Code DC Valence Code DC Valence Code

N+
Z

Z

Z

Z
4 01 O=R 2 13 R–OH 2 11

N+
Z

Z
R 4 07 Z–SH 2 21 R–O–R 2 12

Z–NH–Z 3 02 R–S–R 2 22
||

R–S–R
||

6 24

R N
R

R
3 03 Z–C

O

H
2 14 Z–CH3 4 41

R=NH 3 04 S=R 2 25 R ≡ CH 4 41,80
R=N-R 3 05 R=CH2 4 41, 80 R ≡ N 3 06

atom in an aromatic cycle that is separated with one (two,
three) bond(s) from a heteroatom; DC #40 corresponds
to an arbitrary heteroatom in an aromatic cycle. DC
#41 corresponds to carbon atoms that belong to cycles
consisting entirely from carbon atoms in the state of SP3-
hybridization. Definitions of some other descriptor centers
can be found in (Blinova and Dobrynin, 2000).
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Table 3. The form of a linear descriptor

Descriptor Chain length Descriptor Conjugation
Center 1 (in carbon atoms) Center 2 attribute (binary)

Table 4. The form of a cyclic descriptor

Head Body Tail

Geometric form of the The number of π -electrons Location of
cyclic system in the conjugated system heteroatoms

The elements of FCSS descriptor language fall into three
classes: linear, cyclic, and substitution descriptors.

A linear descriptor is given by a pair of DCs connected
by a chain of -CH2- groups. For these chains it is also
essential whether there is a conjugation (common d- and
π -electrons) between C-atoms of these chains. The form
of a linear FCSS descriptor is described in Table 3. A
linear descriptor is given by seven digits: two digits for
each descriptor center (first goes a DC with the smaller
number) and for the chain length. Conjugation attribute is
given by a single bit (1 if there is conjugation in the chain
and 0 otherwise).

The form of cyclic descriptors is described in Table 4.
The Head component gives the size of the cycle (the
number of atoms) in the case of a monocycle and the
size and location of separate simple cycles in the case of
polycyclic systems.

Substitution descriptors encode the mutual location
of substituents in aromatic systems, e.g. they allow
to distinguish between ‘ortho’- and ‘para’-positions of
substitutors. The first two digits, as well as the fifth and
the sixth digits, of a descriptor of this type correspond
to the beginning and the end of the chain, the third and
the fourth digits denote the mutual location of descriptor
centers and the seventh (binary) digit corresponds to the
presence/absence of resonance interaction (conjugation)
between ultimate elements of the chain, i.e. by the
corresponding descriptor centers. The code of a chain
between descriptor centers A and B is given in accordance
with Table 5.

Since the number of all possible descriptors can be very
large, we generate for each dataset only those descriptors
that arise from molecular structures in the dataset. This
preprocessing is done by a special algorithm that traverses
the molecular graph and constructs the descriptors.

In Figure 1 we give an example of FCSS encoding of
a chemical structure. Here the multiplicity of attribute
occurrences is taken into account (x2 stays for double
occurrence).

Table 5. Encoding of substitutor locations

Location Chain code Conjugation

(‘ortho’)
B

X

A
B X

A

B
X

A B

62 1

(‘meta’)
A B

XA

B
63 0

(‘para’)
A

B

XA B X

A

B

64 1

(‘peri’)
A B

X

A B

65 0

(‘amphi’)

A

B

66 1

A

B

X

A

B

67 1

A
B X

A B

X X

B

A X

A
B

61 1

PREDICTIONS FOR TOXICOLOGY DATA SET
Predictions for the PTC dataset were made according to
the classification model from Section 2 with the use of
FCCS descriptors as structural attributes (set M). 9036
FCSS descriptors were generated to encode examples
from the training set and undetermined examples provided
by the PTC organizers (it took about 8s for Pentium III
866 MHz computer). For each of the four sex/species
groups the goal attribute was toxicity. Positive and nega-
tive classifications were considered as the corresponding
predictions for toxicity. Contradictory classifications were
considered as ambiguous and thus ignored.

In Tables 6 and 7 we present some hypotheses generated
by the JSM-system and used for correct classifications. As
for positive hypotheses, only thirteen of them were used
for positive correct classifications of compounds from
the test set. Some of these hypotheses are common for
several sex/species groups. We show them in Table 6,
where the first column gives a molecular graph and
the second column gives its FCSS descriptors, the third
column gives the number of correct predictions of toxicity
for particular sex/species groups (F and M stand for
female and male, respectively, R and M stand for rats
and mice, respectively). For example, 1FR 3MR means
that a positive hypothesis was used for correct predictions
of toxicity of one substance for female rats and three
substances for male rats.

Far more (around 100) negative hypotheses used for
classifications were generated for each sex/species group.
Due to space limitations, in Table 7 we only present those
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Table 6. Positive hypotheses

Molecular graph FCSS Descriptors No. of correct predictions Molecular graph FCSS Descriptors No. of correct predictions
in sex/species group(s) in sex/species group(s)

O

CH3CH3 1203410 1203410 1 FR
CH3

CH3

O 6,06 3501411 3501411 1 MR

NH

CH3CH3 0202410 0202410 1 FR
3 MR

CH3

Br

3102410 1 FM

NH

NH
6,06 0200021 2 FR

CH2

CH

5,00 4108460 1 FM
1 MM

NH

N

N

N

6,06 0500051 0500331
6,06M1 0200351

1 FR
1 MR
1 FM

O

O

CH3

N
1201411 1201131 6,06
6,00M1

1 FM
1 MM

NH

O

NH CH3

0201131 0202410 1 FR
1 MM

Cl

Cl 6,06 6,06 3162311
3100331 3100331

1 MM

O

O

1204411 1204411 6,00 1 MR

O

OH
1301331 1200331 6,06 2 MR

NH
NH

6,06 0200021 2 FM
2 MR

6,06 6,06 3301331 1 MR

O

CH3

O 1203410 1204410 1 MR
CH3

N

3501411 6,06M1 1 MR

negative hypotheses that were used for the greatest number
of correct negative predictions (i.e. predictions of non-
toxicity).

As for cross-validation, we computed the value of the
criterion of sufficient grounds defined in the first section.
For the training sample the value of CSG is 42%, for the
union of the training and test samples, the value is 91%.
These results show that the training sample was fairly
heterogeneous.

CONCLUSIONS
The evaluation of results of the ROC analysis shows that
the predictions made were among optimal predictions for
three sex/species groups and almost optimal for the fourth
group (note also that we did not make use of the possi-
bility to submit multiple sets of predictions). The ROC

analysis demonstrates the conservatism of predictions
made by the JSM-method: it produces few predictions,
but commits almost no errors. Besides the relevance of
the FCSS language to the problem solved, the latter fact
can be explained by two features of the learning model:
first, we strictly forbid counterexamples of a hypothesis
(i.e. a positive hypothesis does not cover any negative
example). Second, a hypothesis itself, as a representation
of the common properties of positive examples, is their
least general (and thus, ‘most cautious’) generalization.
To allow for less cautious predictions we can change the
definition of a hypothesis by permitting a certain number
of counterexamples (i.e. negative examples for positive
hypotheses and positive examples for negative hypothe-
ses) to be contained in a given hypothesis. One might
also change the definition of a prediction by making it
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Table 7. Negative hypotheses

Molecular graph FCSS Descriptors No. of correct predictions Molecular graph FCSS Descriptors No. of correct predictions
in sex/species group(s) in sex/species group(s)

N

O

0301131 13 FM
15 MM

O

O
NH

1101131 6,06 0202130 7 FM

N N
0302030 7 FR

4 MR
5 FM
6 MM

O

H

1104411 3 FR
4 MR
6 FM
3 MM

OH

1101330 6,06 7 FR
O

NHH

6,06 0202110 19 FM
19 MM

O

O

O

O

H

H

H

H

1105110 1104110 3 FM
3 MR
3 MM

CH3

N

N

3501411 6 FM

O 1302330 6,06 9 MR N 6,06 5,00M1 24 MM

NH NH
6,06 0201021 4 FR

3 MR
5 FM
4 MM

O

NH

6,06 0202130 1 MR
9 FM
10 MM

asymmetric with respect to positive and negative hy-
potheses, e.g. by allowing for a certain rate of negative
hypotheses that would not violate the positive classi-
fication. As for the method of representing molecular
structures, the work on introducing 3D-attributes into the
FCSS language is now in progress.
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